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ABSTRACT
\\ " £ or = 7

> Let G be a graph with p points having a perfect matching and
suppose n is a positive integer with n £ (p—2)/2. Then G is n-extendable
if every matching in G containing n lines is a subset of a perfect matching.
In this paper we obtain an ypper bound on the n-extenda.blhty of a graph
in terms of its genus. s s . RV SRR, [] I AV e
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;,‘:: LIST OF SYMBOLS USED IN THIS PAPER:

i 1. v Greek lower case gamma

- 2. ® Greek upper case phi

3. | the so-called “left floor” symbol
& 4. | the so-called “right floor” symbol

NOTE: All Greek letters are circled in red in the submitted manuscript.
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SOl 1. INTRODUCTION AND TERMINOLOGY 5
23
:,.‘ MATCHING EXTENSION AND THE GENUS OF A GRAPH
) B by

;:-{2 Michael D. Plummer*
% Vanderbilt University
., Nashville, Tennessee, USA

o
f_ﬁ; :

2\ 1. Introduction and Terminology

- Let G be a graph with |[V(G)| = p points and |E(G)| = g lines.
P (Loops and parallel lines are forbidden in this paper.) A matching in
o G is any set of lines in E(G) no two of which are adjacent. Matching

,:: M in G is said to be a perfect matching, or p.m., if every point of G
SR is covered by a line of M. Let G be any graph with a perfect matching

3 and suppose positive integer n < (p — 2)/2. Then G is n-extendable if
L every matching in G containing n lines is a subset of a p.m.

*j The concept of n-extendability gradually evolved from the study of
jL.-fj; elementary bipartite graphs (which are 1-extendable) (see Hetyei (1964),
' Lovész and Plummer (1977)), and then of arbitrary 1l-extendable (or
b “matching-covered”) graphs by Lovész (1983). The study of n-extenda-
:}j bility for arbitrary n was begun by the author (1980).

3‘: The genus of graph G, 4(G), is the minimum genus of all (orientable)
N surfaces in which G can be imbedded. Any imbedding of G in a surface
2 of genus 4 = 9(G) is said to be 2 minimal imbedding. (For more in-

Ny formation on the genus of a graph, see White (1973). In particular, recall
) the well-known result of Youngs (1963) which says that if graph G is
”. imbedded in a surface of genus 4 = 7(G), then the (minimal) imbedding
g must be a 2-cell imbedding.)

:7:-:? A relationship between matching and genus was first studied by
:::ij Nishizeki (1979) who treated the interplay between genus and the car-
:Z:::f dinality of a maximum matching,.

o In (1985), we showed that if G is planar, then G is not 3-extendable.
_. ,‘._ Cook (1973) proved a result that implies that if G is a graph with genus
t} 4G) =+ >0, th?n G is not [%(5+ VI+487)] -e?ctendabl?. In the
:}-.j present paper, we will improve on this result by showing that if 4(G) >
;: 0, then G is not ([% +.'H-1:,;/% )— extendable. Moreover, in the
%

o * work supported by ONR Contract # N00014-85-K-0488
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case of “toroidal” graphs (i.e., graphs of genus 1) we obtain structural
information about — and an infinite family of — extremal graphs.

Throughout this paper, we will assume that all graphs are connected,
that mindeg(G) > 3 and that mindeg*(G) > 3, where mindeg*(G)
denotes the size of a smallest face in an imbedding of G. We shall call
a graph G bicritical if G — u — v has a p.m. for every pair of points
u,v € V(G). For any additional terminology, we refer the reader to
Harary (1969), to Bondy and Murty (1976) or to Lovdsz and Plummer
(1986).

2. The bound for arbitrary positive genus

One of our main tools will be the so-called theory of Euler con-
tributions initiated by Lebesgue (1940) and further developed by Ore
(1967) and by Ore and Plummer (1969). Let v be any point in a graph
G minimally imbedded in a surface of genus 4(G). Define the Euler
contribution of v, ®(v), by

where the sum runs over the face angles at point v and z; denotes the
size of the sth face at v. (It is important to keep in mind that a face may
contribute more than one face angle at a point v. Think of K5 imbedded
on the torus, for example.)

We next present several simple lemmas. We include the proofs for
the sake of completeness. The first is essentially due to Lebesgue (1940).

2.1. LEMMA. If a connected graph G 1s minimally imbedded in a
surface of genus v = 4(G), then 3, ®(v) =2— 2.

PROOF. Let p=|V(G)|, ¢ = |E(G)| and r be the number of faces
in the imbedding. Then

;:legv wsy 1
Zd’(”)=2(1_ 2 +E;)=P“Q+"=2"‘2’7.
v v ta=]
by the generalized Euler 'formula.. |




2. THE BOUND FOR ARBITRARY POSITIVE GENUS 7

2.2. LEMMA. Let G be minimally smbedded in a surface of genus

. v = 1(G) and have mindeg*(G) > 3. Then for all v € V(G), ®(v) <

1—degv/6.
PROOF. Since z; > 3 for all ¢, we have ®(v) < 1 —degv/2+degv/3
and the result follows. ]

2.3. LEMMA. IfG ts connected and p = |V(G)| and v = 1(G), then
for some v € V(G), ®(v) = (2 - 27)/p.

200 (2—29)
4

PROOF. The average value of ®(v) = = —— by Lemma

2.1, and the conclusion follows. [

Let us agree to call any point v € V(G) which satisfies the inequality
of Lemma 2.3 a control point (since such a point will be seen to
“control” , or limit, the degree of matching extendability in G).

2.4. COROLLARY. If G is connected and v = «(G), then if v s
any control point,

degv
-2
yo L@, deev

i=1

5 P 2

PROOF. Follows immediately from Lemma 2.3 and the definition of
o(v). =

2.5. LEMMA. IfG is connected and v = ~(G), then for any control
point v, degv < 6+ 12(y —1)/p.

PROOF. From Lemmas 2.2 and 2.3 we have (2 — 27)/p < ®(v) <
1 — degv/6 and the conclusion follows. =

Next, we need a lower bound on the number of points in a graph of
genus v. The following is an immediate corollary of the Ringel-Youngs
formula for the genus of the complete graph (1968).

2.6. LEMMA. If G has p points and 4(G) = v > O, then p >
(7 + /487 — 47)/2.
PROOF. By the Ringel-Youngs result we have

v=1(G) < 1(K,) = [(p—31)(2p—4)] < (p—-31)gp—4) +1

and the inequality follows. n

Al .
-------------
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}g As our last preliminary results we state the next two theorems which
w will be used repeatedly below. The proofs may be found in Plummer
;\. (1980).

E 2.7. THEOREM. IfG ts n-eztendable for some 2 < n < (p—2)/2,
o then G 1s also (n — 1)-eztendable. »
o 2.8. THEOREM. If G is n-eztendable for some 1 < n < (p—2)/2,
) then G is (n + 1)-connected. n
;3‘ We are now prepared for the main result of this paper.

o 2.9. THEOREM. If G is any connected graph with v(G) = v > 0,
N then
N (@) G 1s not (l% + %J) - eztendable, while if (b) in addi-
P s e
& tion, G contains no triangle, then G is not (2 + [2\/'7J)- eztendable.
:: PROOF. If G contains no triangle, then G is at most (2 + |2,/7])-
o connected, by Theorem 4 of Cook (1973), and hence is not (2 + |2,/7])-
o tendab h 2.8. But since 2+ |2,/7] < |2+ 1801
oY extendable by Theorem But since 2 + [2,/7] < lz + o7 e |
o forall ¥ > 1, G is not % + 1807 | _ extendable by Theorem 2.7.
! 7++/487—47
o So suppose G contains a triangle. (Note that this triangle need
.*' not be the boundary of a face in general.) Suppose also that G is
) 9, _18(1—1) |} Th

([2 + Y D extendable en by Theorem 2.7, G must be
- 2-extendable. But then by Theorem 4.2 of Plummer (1980), G must be
? either bipartite or bicritical. But if G is bipartite, it contains no triangles,
o so it must be that G is bicritical.
x From Lemma 2.3 we know that there exists a control point v € V(G)
o~ and from Lemma 2.5 for any such control point v, degv < 6+12(y — 1)/p.
j'.;zj' Using Lemma 2.6, we obtain

N degv < 6 +12(y—1)/p

™o

3
4 <oy 200=1)-2
- 7+ /48y —47
)
A 24(v—-1

e+ 21 (1)
‘t:{ (Note that the second inequality in the above series of three is strict
zj whenever v > 1.)

o
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\ Let us say that a matching M in G isolates a point v if the lines
Ny of M cover N(v), the set of neighbors of v, but M does not cover v.
(8 We will now show that given any control point v in G, there must be a
| S matching in G which isolates v.

3 If there exists a point w ¢ {v} U N(v), then G — v — w has a p.m.

-

which certainly isolates v. So let us assume that {v} U N(v) = V(G).
Then by Lemma 2.5, we have p = degv+1 < 7+ (12(y—1))/p. From this
inequality it follows that (p—2)/2 < (3+ /1 + 487)/4. Now by definition
of n-extendable, n < (p—2)/2 and hence

{g+ 18('7—-1)J [3+WJ

.

Yere el

2 7+ /48y — 47 4

- If we write this inequality as | F(7)| < |G(7){, we claim that F(v)—

' 1 > G(v) (the details are left to the reader) and hence we have a
contradiction.

So we may assume that G contains a matching which isolates control

N point v.

l Claim 1. If degv = y and there are z triangular faces at point v,

then if M, is a smallest matching which isolates v, then |M,| < y—z/4.
Proof of Claim 1. If z = 0, the inequality is trivially true, so suppose

- that z > 0. Since M, is made up of two types of lines: (a) lines matching
- a point of N(v) to a point of V(G)—(N(v)U{v}), and (b) lines matching
-. two points of N(v), we can obtain an upper bound for M, once we have
an upper bound for the total number of lines of type (a). When we have
a matching at hand which matches a point u of N(v) to a point not in
2 N(v)u {v}, we will say that u is matched out of N(v).
2 Note that no two points u;, ui+1 in N(v) which lie on the same
v triangular face at v can both be matched out of N(v), for we could
replace these two lines out of N(v) with the line u;u;4; and get a new
N matching which still isolates v, but is smaller than M,, a contradiction
N of the choice of M,. So we want an upper bound on the largest number
> of potential matching lines out of N(v) subject to the constraint that no
g triangular face vu;u;,1v has both u; and u;,; matched out of N(v).
N Without loss of generality, we assume that the various clusters of
N triangular faces are consecutive in, say, a cyclic clockwise array about
N point v; that is, two clusters are separated by exactly one non-triangular
» face. (See Figure 2.1.)
We now claim that the largest number of potertial lines out of N(v)
from triangular faces in general is no larger than the number of such
',f potential lines when all z triangles are in ore triangle cluster.
y
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FIGURE 2.1.

FIGURE 2.2.

FIGURE 2.3.

This can perhaps be most easily seen by an inductive procedure
whereby we reduce the number of triangular clusters by one, but the
number of potential matching lines out of N(v) is never reduced. Let us
call a cluster of triangular faces odd if the number of triangular faces in
the cluster is odd and otherwise, even.

There are three cases to treat: (a) one odd and one even cluster,
(b) two even clusters and (c) two odd clusters. See Figure 2.2 in which
potential lines out of N(v) belonging to an isolating matching are shown
as arrows. In each case the dashed arrow represents the new potential
line out of N(vj obtained by the departure of a line lost in coalescing
the two clusters. (The degree of v must remain constant of course.)

Note that in cases (a) and (b) above, the potential number of lines
out of N(v) stays the same under the indicated transformation while in

T Tl

~"m‘&{..um’. B O sy
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(c) it increases by one.

So now we shall suppose that the z triangular faces at v are con-
secutive. Let the points of the triangular faces be u, . .., v, (in this same
clockwise order).

Recall that if any two consecutive u;’s are joined by a line of E(G),
but each is matched out of N(v), then M, is not a smallest isolating
matching.

Let us first assume that z < y.

If z is odd, the largest possible number of M, lines out of ug, ..., uz
is (z+ 1)/2. (See Figure 2.3.) If z is even, on the other hand, this largest
possible number of M, lines out of ug,...,uz is (z + 2)/2. (See Figure
2.4))

Now let us again suppose z is odd. In this case, there remain
z+1-—((z+1)/2) = (z + 1)/2 points of the z triangles which must
be matched to other points in N(v). Clearly, there will remain the most
points of N(v) available to be matched out of N(v) when these (z +1)/2
points are perfectly matched with each other (when (z+1)/2 is even) and
near-perfectly matched — with one matched to a neighbor of v not on a
triangular face at v — in the case when (z+1)/2 is odd. So the maximum
number of neighbors of v matched out of N(v)is = (z+1)/2+y—(z+1)
when (z+1)/2isevenandis = (z+1)/2+y—(z+1)—1 when (z+1)/2
is odd.

Thus when (z + 1)/2 is odd, we have

(z+1)
2

(z+1)/2+1 _ (z +3)

M,| <
IVI-— 2 4 '

+(y-(z+2)+

while when (z + 1)/2 is even, we have

LA RS LA

2 2 4

IM,| <

Now suppose z is even. (See Figure 2.4.) Then there remain (z +
1)—(z +2)/2 = z/2 points of the z triangles which must be matched to
other points in N(v). As before, clearly there will remain the most points
of N(v) available to be matched out of N(v) when these z/2 points are
perfectly matched pairwise when z/2 is even and near-perfectly matched
pairwise — with one matched to a neighbor of v not on a triangular face
at v — when z/2 is odd.

So if /2 is odd, we have

Tme T T Te - T UM
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(z+2)
2

(z+2)
e

|M,| < +y—(z+2)+ (:z:/2+1)— -

while if z/2 is even, we have

0 < EED oy aa e SR =y o/a

Now let us assume that z = y; in other words, that all faces at y
are triangles. Label N(v) clockwise as uy,...,uz. First suppose that z
is even. Then {ujuz,u3ug,...,%z—1uz} is a matching isolating v and
hence |M,|=z/2=y—-z/2 < y-—1z/4

Finally, suppose that z is odd. If any of the u;’s can be matched
out of N(v) U {v}, say u; for example is matched to a point w, then
{vjw,uzus,..., uz_1tz} is a matching isolating v and so |M,| = (z -
1)/2+1=(z+1)/2=z—-(z-1)/2=y—(z-1)/2 < y— z/4, since
z =y > 5. (Recall that by Theorem 2.7, graph G is 4-extendable and
hence by Theorem 2.8, G is 5-connected. Hence mindegG > 5.)

So assume that {v,uy,...,%;} = V(G). But then G has no match-
ing which isolates v, a contradiction.

So we see that in all cases, |[M,| < y — z/4. This completes the
proof of Claim 1.

Solet f(z,y) = y—(z/4). We would now like to find an upper bound
for f(z,y) in terms of 4. From Corollary 2.4 and Lemma 2.6 we have

Yy
1 4y—1
<Y =41+ (r=1)
o T 7 4 (/487 — 47
- 4(y-1
y-z _ 4-1)

z
3 4  7+./48y—47

+ 1.

Hence
16(v—1
y<Z4 (r=1)

+4
3 7+ .487—-47

Thus we have the linear program:

(2)

i A e i S O SRl B

Rl S R B
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Nyl

15y B

:: ; maximize f(z,y) =y — (z/4)

; ject t : < 6+ 2411

_;; subject to y<6 R rr—r (1)

(L3 —

Gk < & 444 18071

iy N R gray =)

&*ﬁ 0<z<y (3)

e 5<y. (4)

Y

S

The feasible region is a quadrilateral having vertices A = (0,4 +
o 16r(v)), B = (6 + 24r(7),6 + 24r(7)), C = (5,5) and D = (0,5), where
r(q) = -y \/48_7__ Hence the maximum value for f(z,y) occurs at
208 vertex B and this value is 8 + —18021

v 7+\/48'1—47
& Now since we may select only integral numbers of lines, we can isolate

by ch t most |2 + —280=Y | Jines which collectivel
v }’C oosmga. mos [ 7+m e (o] collec eycover

N(v) and the proof is complete. m

-~
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L FIGURE 3.1.

3. The special case when 7=1

3 When G is “toroidal”, that is, when 4(G) = 1, we can obtain a
, sharper result than that implied by Theorem 2.9.
y 3.1. THEOREM. IfG is connected and 4(G) = 1, then either
. (a) G 1s not 3-extendable or
» (b) G ts point-regular of degree 4 and face-regular of degree 4 and
7 hence not 4-extendable.
'. PROOF. From Lemmas 2.1 and 2.5 we know G contains a point v
with ®(v) > 0 and degv < 6. Now suppose G is 3-extendable.
Case I. Suppose ®(v) > 0, for some point v. (As before, we will call
such a point v a control point.) Then degv < 5 by Lemma 2.2. Now by
‘ definition of n-extendability, p > 8. Also we know that G is 4-connected
: by Theorem 2.8 and hence degv > 4.

First let us assume that degv = 4. Now the solutions to the
diophantine inequality

1

| 2 >

] i T

are as listed in Plummer (1985) and we proceed to treat each.

(3,3,3,z), £ > 3. Let the neighbors of v be {a,b,¢c,d}. Then note
‘ that no two of these four neighbors of v can be equal since G has no
. multiple lines. Thus {ab, cd} do not extend to a p.m. and hence G is not
2-extendable. But then by Theorem 2.7, G is not 3-extendable either, a
contradiction. (See Figure 3.1.)

(3,3,4,z), 4 < £ < 11. Let the fourth point of the 4-face at v be e.

(i) Suppose the two triangular faces are consecutive in, say, the
clockwise direction about point v. We know that e £ ¢,d or b, again
since there are no multiple lines. So suppose ¢ = a. Then {ad,bc} do
not extend and we have a contradiction as before. (See Figure 3.2(i).)

So en{a,b,c,d} = 0. Now if there exists a point g & {a,b,¢,d, e},
but which is adjacent to one of the points a, c,d, we get a matching of

Ly

L
v LY T Y V..
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FIGURE 3.2.

L FIGURE 3.3.

size 3 at v which does not extend, again a contradiction. Thus since
_ G has at least 8 points, we have that {b, e} is a cutset of G and hence
5. G is not 3-connected and hence not 2-extendable, a contradiction. (See
- Figure 3.2(ii).)
oy (ii)) Now suppose the two triangular faces are separated by the 4-
] gonal face. Then {ab,cd} is a matching of size 2 which does not extend,
< a contradiction.

":;“ (3,3,5,x), £ =5,6,7. There are two cases to consider.

“.j-;‘} First let us suppose that the two triangular faces at v are consecutive
D) in the clockwise orientation about point v. Let d be the point on the
e pentagonal face at v which is adjacent to point ¢ via a line of the
-_ZEi;:: pentagonal face boundary. Also let the remaining fourth point adjacent
'::';j with point v be denoted e.

e Now we know that d cannot be equal to b, ¢ or e, so suppose that

d = a. (See Figure 3.3(i).)

Now if points e and b are adjacent then {be,ac} does not extend, a
contradiction. So suppose that ¢ and b are not adjacent.

Now if e and a are adjacent, then matching {ea, bc} does not extend,

- while, symmetrically, if e and ¢ are adjacent then matching {ec, ab} does
“' . . .

i not extend. In either case we have a contradiction.
ot So point e is adjacent to a point g, g € {a = d,b,c} and we may
e assume that g is such that line eg is on the boundary of the pentagonal
F face at v. Thus we may assume that g and a = d are adjacunt on the
pentagonal face.
- Now since degb > 4, we must have a point h adjacent to b such
\_'E that A ¢ {a = d,b,c,v}. We already know that h 5% e from above. If
S
ic




FIGURE 3.4.

FIGURE 3.5.

h # g, then matching {bh,ac,eg} does not extend and once again we
have a contradiction.

So we must assume that g = h. (See Figure 3.3(ii).) Now we already
know that e is not adjacent to any of a = d, b, c. Since dege > 4, there
must be yet another point 7, where j € {a = d,b,c,v,g = h}. See Figure
3.3(iii). But the matching {e7,ag, bc} does not extend, a contradiction.

So now we may suppose that d 7% a. Hence d € {a,b,c,v,e}. Now
let f be the fitth point of the pentagonal face at v. So the pentagonal face
boundary at v is vedfev. If f ¢ {a,b,c}, then the matching {eb,cd,ef}
does not extend, a contradiction. (See Figure 3.4(i).)

So we assume that f € {a,b,c}. But f 5# c since G cor. ir no
multiple lines. So f € {a, b}.

First suppose that f = a. (See Figure 3.4(ii).) In this case, {ae, bc}
does not extend.

Now suppose that f = b. (See Figure 3.5.)

If a is adjacent to some point g, where ¢ € {b = f,¢c,d,v,e}, then
matching {ag, be, cd} does not extend, a contradiction. Therefore, since
dega > 4, a must be adjacent to some two points in the set {c,d,e}. If a
is adjacent to ¢, the matching {ac, be} does not extend, a contradiction.
So a is adjacent to both d and e. But then matching {ae, bc} does not
extend, a contradiction.

This finishes the case when the two triangular faces at v are con-
secutive.

Now assume that the two triangular faces at v are separated by the
pentagonal face. (See Figure 3.6.) But then matching {ab,cd} does not
extend. This completes the case for (3,3,5,z), £ =25,6,7.
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FIGURE 3.86.

FIGURE 3.7.

FIGURE 3.8.

(3,4,4,z), z = 4,5. First suppose that the two quadrilateral faces
at v are not separated by the triangular face. Without loss of generality,
suppose the neighbors of v in a clockwise orientation about v are a, b, ¢, d
respectively, where abva is the triangular face. Let vbecv be the 4-gonal
face contiguous to the triangular face, moving clockwise.

Suppose now that e = a. (See Figure 3.7.) In this case, since G has
no parallel lines, degb = 2, a contradiction.

So suppose a 7% e. If e = d, then matching {ab, cd} does not extend.
So we may suppose e # a,d. (See Figure 3.8.)

First note that c is not adjacent to d or we would have a matching
of size 2 which does not extend. Then we must have N(d) C {a,b,e¢, v}
or else we would have a matching of size 3 which does not extend. But
then since degd > 4, we must have N(d) = {a,b,¢,v}. Next consider
N(a). Point a is not adjacent to ¢ or else we would have a matching of
size 2 which does not extend. So we must have N(a) C {b,e,d, v} or else
as above we would have a matching of size 3 which does not extend. So
since dega > 4 also, we get that N(a) = {b,d,e,v}. (See Figure 3.9.)

Applying the same arguments to possible neighbors of point b, we
see that N(b) = {a,d, e, v} too and hence, since |(VG)| > 8, since G is
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FIGURE 3.9.

FIGURE 3.10.

3-extendable, we must have that {c, e} is a cutset for G, contradicting
the fact that, by Theorem 2.8, G must be 4-connected.

Now we turn to the case in which the two quadrilateral faces at v
are separated in the clockwise order about v by a triangular face. Let
the first quadrilateral face be denoted vaebv, the contiguous triangular
face by vbcv, and the next contiguous quadrilateral face by vefdv. First
of all, note that points @ and d are not adjacent or we would have a
matching of size 2 which does not extend. Thus d # e.

Suppose next that e = c. Then since G has no parallel lines, degb =
2, a contradiction.

Thus e ¢ {a,d,¢c,d,v}. By symmetry, f & {a,b,c,d,v} as well.

Suppose now that e = f. (See Figure 3.10.)

Now N(d) C {e = f,b,¢c,v}, or else we get a matching containing
ae and bc, and covering d, which does not extend. By 4-connectivity,
then, N(d) = {e = f,b,¢c,v}.

Similarly, N(a) C {e = f,b,c,d,v}. But b ¢ N(a), or else {ab, cd}
does not extend. We already know that d € N(a), so N(a) C {e =
f.¢,v}, contradicting the 4-connectivity of G.

Thus we may assume that e # f. (See Figure 3.11.) But then
{ae, bc, fd} does not extend; a contradiction. The case (3,4, 4, z) is thus
complete.

Now suppose degv = 5. Then we have the inequality

1
2;>

fml 7t

N | w

The only solutions in this case are:
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[ )
_::j; (3,3,3,3,2), z = 3,4,5. Let N(v) = {q,b,c,d,e}. Now if there is
- a point g ¢ N(v) such that either a is adjacent to g or e is adjacent to
g, we are done since the matching {ag, bc, de} (respectively, {ab,cd, eg})

does not extend, a contradiction.
We get a similar contradiction if there is a point g € N(v) such that
3'~ g is adjacent to point ¢. But then since G must have at least 8 points,
.:_"‘\ since we are assuming it is 3-extendable, it follows that {b,d} is a cutset
". for G and hence G is not 3-connected, a contradiction.

- -
»
a

ry

Case II. So we may assume that ®(v) < 0 for all v € V(G). But

}: then by Lemma 2.1, we have ®(v) = O for all v € V(G). Choose an
. arbitrary point v in V(G). Then by Lemma 2.2, 0 = ®(v) < 1—degv/6,
L so degv < 6.

We also now have ®(v) = 1 — degv/2 + Zf;f"l/a:‘- = 0,

‘ or 3767 1/z; = deguv/2 — 1. Moreover, since G is 3-extendable, it is
N 4-connected and hence degv > 4.

S First suppose degv = 4 and hence 2:21 1/z; = 1. Let N(v) =
J {a,b,c,d} in the usual clockwise orientation about v. Also let the faces
with face angles at v be named Fy, F3, F3, Fy under the same orientation

::I;', where face F; contains the lines av and vb.
" There are only four solutions to this diophantine equation:
f (3,3,4,12),(3, 3,6,6),(3,4,4,6), and (4,4,4,4). Arguments identical to
. those in Case I give us contradictions for the solutions (3,3, 4, 12) and
o (3,4,4,6).
Yo Let us consider the case (3, 3,6, 6). If the two triangular faces are not
.:-;:; consecutive in the clockwise orientation about v, then we have a matching
! of size 2 which does not extend and again we have a contradiction. So
1-:2 we may assume that the two triangular faces at v are consecutive in the
o clockwise ordering. Let N(v) = {a, b, c,d} where abva and bcub are these
.*}' triangular faces. Note that a and d are not adjacent, or else {bc,ad}
! would not extend. Similarly, points ¢ and d are not adjacent.
o Since degc > 4, point ¢ is adjacent to some point f where f ¢
il {a,b,d,v}. Similarly, point d is adjacent to at least two points not in
"E‘,' {a,b,c,v} and hence to a point g € {a,b,c,v, f}. But then {ab,cf,dg}
)
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is a matching of size 3 which does not extend.

We defer the remaining case (4, 4, 4, 4) until the end of this proof.

Next, suppose degv = 5 and let N(v) = {a,b,c,d,e}. Then
Y iy 1/zi = 3/2. It is then clear that z; = 3 for nt least two of the
z;’s, but for no more than four.

Suppose first that more than two z;’s = 3. In fact, suppose first
that four of the faces at v are triangles and hence the fifth must be a
hexagon.

Again, since G is 3-extendable, |V(G)| > 8 and so there must be a
line with exactly one endpoint in the set N(v). If such a line is incident
with a, ¢, or e, we get a contradiction as before. So such a point can
only be incident with b or d. But then {b,d} must be a cutset of G, a
contradiction.

Suppose next that there are precisely three triangular faces at v and
hence the two remaining faces must both be quadrilaterals. There are two
subcases to consider here. First suppose that all three triangular faces
are consecutive in a clockwise orientation about point v. Without loss of
generality, suppose that faces avba, bvch and cvdc are these triangular
faces. Now as before, if point e is adjacent to a point different from
a,b,c,d or v, then G is not 3-extendable. So N(e) C {a,b,c,d,v}.
Since dege > 4, we may assume that e is adjacent to b without loss
of generality. Now if a were adjacent to a point g not in {b,¢,d, e, v}
then again G is not 3-extendable. Thus we may assume that N(a) C
{b,c,d,e,v}. But then again since |V(G)| > 8, {b,c,d} is a cutset
contradicting the fact that G is 4-connected.

So now suppose that the three triangular faces at v are not consecu-
tive about v. Without loss of generality, assume that abva, bcvb and
devd are the triangular faces at v. Now if either a or ¢ is adjacent to a
point not in the set {a,b,c,d,e,v}, we find that G is not 3-extendable.
Thus N(a) C {b,c,d,e,v} and similarly for N(c). Thus {b,d,e} is a
cutset of G, once again contradicting the fact that G is 4-connected.

So suppose that exactly two z;’s = 3, say z; and z;. Then
1/z3 + 1/z4 + 1/25 = 3/2—2/3 = 5/6, and this contradicts the fact
that 1/23 + 1/:1:4 + 1/225 < 3/4.

Finally, suppose deg v = 6 and hence Z?_l 1/z; = 2. Then the only
solution to this diophantine equation is (3, 3, 3, 3, 3, 3) but since |V (G)| >
8, it is immediate that G is not 3-extendable.

It remains only to consider the solution (4,4, 4,4). Moreover, since
all other cases have been treated, we may assume that G is both 4-point-
regular and 4-face-regular. But such a graph can be at most 4-connected
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b and hence not 4-extendable. =

IO et g

An infinite family of graphs of genus 1 which are 3-extendable is the
T family of bipartite toroidal lattices T(2m,2n), for m,n > 2, where
T(2m,2n) is just the Cartesian product of the even cycles C;,, and Ca,
R on 2m and 2n points respectively. Clearly these graphs can be imbedded
‘. on the torus in such a way that each face is a quadrilateral. We show
T(4, 6) so imbedded in Figure 3.12. (Note that T(4, 4) is perhaps better
" known as the 4-cube, Q4.)
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